Virtual Clay: Haptics-Based Deformable Solids of Arbitrary Topology
نویسندگان
چکیده
This paper presents Virtual Clay as a novel, interactive, dynamic, haptics-based deformable solid of arbitrary topology. Our Virtual Clay methodology is a unique, powerful visual modeling paradigm which is founded upon the integration of (1) deformable models, (2) free-form, spline-based solids, (3) procedural subdivision solids of arbitrary topology, and (4) dynamic objects governed by physical laws. Solid geometry exhibits much greater modeling potential and superior advantages to popular surface-based techniques in visual computing. This is primarily because a CAD-based solid representation of a real-world physical object is both geometrically accurate and topologically unambiguous. We first introduce the concept of Virtual Clay based on dynamic subdivision solids. Then, we formulate the mathematics of Virtual Clay through the integration of the geometry of subdivision solids with the principle of physics-based CAGD. Our Virtual Clay models respond to applied forces in a natural and predictive manner and offer the user the illusion of manipulating semi-elastic clay in the real world. We showcase example sculptures created with our Virtual Clay sculpting environment, which is equipped with a large variety of real-time, intuitive sculpting toolkits. The versatility of our Virtual Clay techniques allows users to modify the topology of sculpted objects easily, while the inherent physical properties are exploited to provide a natural interface for direct, force-based deformation. More importantly, our sculpting system supports natural haptic interaction to provide the user with a realistic sculpting experience. It is our hope that our Virtual Clay graphics system can become a powerful tool in graphics, computer vision, animation, computer art, interactive techniques, and virtual environments.
منابع مشابه
Virtual Clay: A Real-time, Haptics-based Sculpting System
In this research we systematically develop a novel, interactive sculpting framework founded upon subdivision solids [1] and physics-based modeling. In contrast with popular subdivision surfaces, subdivision solids have the unique advantage of offering both the boundary representation and the interior material of a solid object. We unify the geometry of subdivision solids with the principle of p...
متن کاملA Hybrid 3D Colon Segmentation Method Using Modified Geometric Deformable Models
Introduction: Nowadays virtual colonoscopy has become a reliable and efficient method of detecting primary stages of colon cancer such as polyp detection. One of the most important and crucial stages of virtual colonoscopy is colon segmentation because an incorrect segmentation may lead to a misdiagnosis. Materials and Methods: In this work, a hybrid method based on Geometric Deformable Models...
متن کاملPhysically Interacting with Four Dimensions
We exploit the combination of a virtual world containing physicallyinteracting 4D objects with a multimodal haptics-driven user-interface model; the goal is to facilitate the development of accurate cognitive models enabling the visualization of 4D space. Our primary test domain supports tactile interaction with physically colliding and deformable curves and surfaces embedded in 4D, an importan...
متن کاملVirtual Node Algorithms for Simulating and Cutting Deformable Solids
of the Dissertation Virtual Node Algorithms for Simulating and Cutting Deformable Solids
متن کاملA Haptics-based Virtual Environment for Engineering Design and Manufacturing Applications
Haptic technology is revolutionizing the way people work in 3D on computers. Haptics allows people to directly interact with digital objects and data exactly as they do in the real world-using their sense of touch. Hitherto, designers and artists have used haptics to intuitively sculpt models using digital clay. Haptic feedback devices allow doctors to perform remote virtual surgical operations...
متن کامل